Nanofibers

Nanosciences and nanotechnology led to the nanofibers, and is currently the main focus of research, development and innovation, where investments have been significant.

Nanofibers are usually produced by electrostatic spinning.

The basic polymers normally used for forming nanofibers are polyethylene (PE), polypropylene (PP), polybenzimidazole (PBI), polyacrylonitrile (PAN), polyamide (PA), polyethylene terephthalate (PET) and polyester (PS), among others.

Given the nanometer scale in which the fibers are designed, have special properties that make them very attractive for numerous applications such as:

– A high specific surface area (area / unit mass);
– High aspect ratio (length / diameter);
– Low number of defects;
– Biomimetic potential.

These properties lead to the potential application of nanofibers in fields as diverse as high-performance filters, fibrous absorbent composite materials reinforced by fibers, fiber materials for dressings, grafts created in vivo to implant materials for controlled drug delivery, nano devices and microelectronics , electromagnetic shielding, photovoltaic devices, high-performance electrodes, and an array of sensors based on nanofibres.

Fibras Naturais

Natural Fibers

The natural fibers can be of animal, vegetable or mineral origin. In recent years there has been a renewed interest in natural fibers considering the issues related to the sustainability of the planet.

View more

Non-Natural Fibers

The non-natural fibers have been developed with the aim of improving various properties such as mechanical efficiency, thermal stability and electrical conductivity, to natural fibers.

View more

fibras inorgânicas

Inorganic Fibers

Inorganic fibers, also sometimes called high performance fibers or super-fibers, have characteristics and properties that differ from other man-made fibers.

View more

fibras funcionais

Functional Fibers

Functional fibers are fibers which perform a specific function, may be defined as being unique, in that each is able to respond to a given situation.

View more

Nanofibers

Nanosciences and nanotechnology led to the nanofibers and is currently the main focus of research, development and innovation, where investments have been significant.

View more

fibras multicomponentes

Multicomponent Fibers

It is hoped that in the future, the possibility of combining the properties of the base polymer, the bicomponent fibers are assumed to be engineered materials in areas as diverse as medicine, architecture, agriculture and even fashion.

View more